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Abstract: Mueller matrix imaging contains abundant biological microstructure information and
has shown promising potential in clinical applications. Compared with the ordinary unpolarized
light microscopy that relies on the spatial resolution to reveal detailed histological features,
Mueller matrix imaging encodes rich information on the microstructures even at low-resolution
and wide-field conditions. Accurate staging of liver fibrosis is essential for the therapeutic
diagnosis and prognosis of chronic liver diseases. In the clinic, pathologists commonly use
semiquantitative numerical scoring systems to determine the stages of liver fibrosis based
on the visualization of stained characteristic morphological changes, which require skilled
staining technicians and well-trained pathologists. A polarization imaging based quantitative
diagnostic method can help to reduce the time-consuming multiple staining processes and provide
quantitative information to facilitate the accurate staging of liver fibrosis. In this study, we report
a polarization imaging based radiomics approach to provide quantitative diagnostic features
for the staging of liver fibrosis. Comparisons between polarization image features under a 4×
objective lens with H&E image features under 4×, 10×, 20×, and 40× objective lenses were
performed to highlight the superiority of the high dimensional polarization image features in the
characterization of the histological microstructures of liver fibrosis tissues at low-resolution and
wide-field conditions.

© 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement

1. Introduction

Mueller matrix imaging contains abundant biological microstructure information [1–4] and has
been applied in the characterization of various pathological tissues such as cervical precancerous
lesions [5,6], breast cancerous tissues [7], and white matter fiber tracts of brain tissues [8].
The in vivo low-cost wide-field high definition Mueller polarimetric endoscope designed by
Qi et al. [9,10] demonstrates the potential applications of Mueller matrix imaging in the
wide-field early epithelial cancer diagnosis, surgical margin detection, and energy-based tissue
fusion monitoring. Mueller matrix imaging is sensitive to biological microstructures even in
sub-wavelength scales [1]. Compared with the commercial unpolarized light microscopy that
relies on the spatial resolution to reveal detailed histological features, Mueller matrix imaging
encodes sub-wavelength microstructures even at low-resolution and wide-field conditions [11,12].
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In Mueller matrix imaging, previous studies have been focusing on using polarization
parameters to characterize the pathological microstructures at pixel level rather than image level.
For example, Wang et al. [13] used the average value of polarization parameters δ and t that
involve minimal polarization image textures to characterize the liver fibrosis tissues. Dong et al.
[7] proposed a pixel-based extraction approach to derive polarimetry feature parameters (PFPs)
in the characterization of breast cancerous tissues. In recent years, several studies start to adopt
the image texture analysis approach. Dong et al. [14] used the gray level co-occurrence matrix
(GLCM) method in the quantitative characterization of breast ductal carcinoma tissues. Yao et
al. [15] applied the local binary pattern (LBP) technique in the quantitative characterization
of endometrial phases. Recently, Liu et al. [11] quantified the degree of correlation between
H&E image texture features and pixel-based polarization parameter sets to provide additional
microstructural information in assisting diagnosis. This research highlights the superiority of
pixel-based polarization parameters in low-resolution and wide-field conditions. However, few
previous studies involve systematic polarization parameter image based texture analysis.

Radiomics builds upon the advance in computer-aided clinical studies [16–19]. It transforms
tumor pathophysiology information encrypted by medical images into high dimensional minable
features to provide detailed quantification of tumor histological features [20,21]. Radiomics
features include the intensity, shape, texture, and wavelet information of tumor images. Radiomics
has been applied in various cancer studies to improve diagnostic, prognostic, and predictive
accuracies. For example, Abdollahi et al. [22] applied radiomics approaches on magnetic
resonance images to correlate the radiomics features with the outcomes of radiation therapy for
the future prognosis of prostate cancers. In addition, in the era of precision medicine, radiomics
features can be combined with other radiological, genomic, and proteomic information to
establish objective, multi-dimensional and effective diagnostic and prognostic processes. Lambin
et al. [21] summarized the workflow of radiomics into five phases: data selection, medical
imaging, feature extraction, exploratory analysis, and modeling. Mueller matrix imaging, as an
innovative quantitative imaging method that is high dimensional and contains rich microstructure
information of pathological tissues, demonstrates the potential of developing a computer-aided
polarization imaging based radiomics model in the quantitative characterization of pathological
tissues.

Liver disease has become a major world public health problem [23,24]. Liver fibrosis is a
characteristic of most types of chronic liver diseases. The accurate staging of liver fibrosis is
essential for the therapeutic diagnosis and prognosis of chronic liver diseases. In the clinic, liver
biopsy is the reference standard for the assessment of liver fibrosis [25]. Pathologists commonly
use semiquantitative numerical scoring systems such as Scheuer [26], Metavir [27], Ishak [28],
and Batt-Ludwig [29] to determine the stages of liver fibrosis based on the visualization of
characteristic morphological changes of Hematoxylin and Eosin (H&E), Masson’s trichrome, and
Gordon and Sweet’s silver stained sections. The multiple staining processes are time-consuming
and require skilled technicians to obtain qualified staining sections for accurate diagnosis. The
complex semiquantitative numerical scoring systems focus on qualitative histological features
rather than quantitative histological features and require well-trained pathologists with rich
experience in clinical diagnosis. Thus, a polarization imaging based quantitative diagnostic
method can help to reduce the multiple staining processes and provide quantitative information
to facilitate the accurate staging of liver fibrosis. Previous research [13] indicates the statistical
analysis of Mueller matrix polar decomposition (MMPD) and Mueller matrix transformation
(MMT) parameters can facilitate the preliminary quantification of 8-µm-thick non-stained and
dewaxed sections of liver fibrosis tissues. Further study with more tissue samples is necessary
to investigate the polarization imaging encoded texture features of liver fibrosis tissues. In this
study, a polarization imaging based image feature analysis approach is presented to provide a
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quantitative method that focuses on systematic polarization parameter image textures analysis in
the staging of liver fibrosis.

2. Methods and materials

2.1. Experimental setup

In this study, a dual division of focal plane (DoFP) polarimeters-based full Mueller matrix
microscope (DoFPs-MMM) as shown in Fig. 1 was used for fast full Mueller matrix imaging
[30]. The DoFPs-MMM is designed by adding a polarization state generator (PSG) and a
polarization state analyzer (PSA) on a commercial transmission microscope (L2050, Guangzhou
LISS Optical Instrument Co., Ltd., China). The PSG contains a fixed-angle linear polarizer (P1)
and a rotatable zero-order quarter-wave plate (R1). The four independent polarization states
are generated by rotating the fast axis of R1 to four angles including± 45° and± 19.6°. The
PSA contains two 16 bit DoFP polarimeters (PHX050S-PC, Lucid Vision Labs Inc., Canada), a
fixed-angle zero-order quarter-wave plate (R2), and a 50:50 non-polarized beam splitter prism
(CCM1-BS013/M, Thorlabs Inc., USA). A DoFP polarimeter adds a pixelated micro-polarizer
array (MPA) in front of an ordinary CCD sensor to form super pixels. Each super pixel contains
four adjacent pixels with different polarization orientations, which enables the measurement
of four linear polarization channels including 90°, 45°, 135°, and 0° in a single shot. The two
DoFP polarimeters with the same field of view (FOV), resolution, and exposure time are fixed
to the transmission and reflection ends of the 50:50 non-polarized beam splitter prism, and
aligned with a polarization orientation of 0°. A fixed-angle zero-order quarter-wave plate (R2) is
placed between the transmission end of the prism and DoFP-CCD1. During the experiment, the
incident beam from the LED (633 nm, ∆λ= 20 nm) is modulated by the PSG and then passes
through the sample. The scattered light from the sample passes through the objective lens and is
finally recorded by the two DoFP CCDs of PSA. The Mueller matrix of the sample (Msample) is
calculated based on the equation as shown in Eq. (1) [30].

Msample = [Sout][Sin]
−1 (1)

where [Sin] contains four independent polarization states generated through the rotation of R1 in
the PSG. And [Sout] refers to the polarization states detected by the PSA in a single shot. Detailed
information relative to the DoFPs-MMM is demonstrated in [30].

2.2. Liver fibrosis tissue samples

This study involves 38 patients with pathologists determined stages of liver fibrosis. In this study,
the samples were collected from patients who underwent surgeries for liver cancers between
January 2020 to December 2021 in Mengchao Hepatobiliary Hospital. Among the 38 patients,
there are 31 male patients and 7 female patients. The average age for male patients is 58.16
years old, and the average age for female patients is 61.43 years old. The inclusion of these 38
patients in this study mainly because they have liver biopsy tissues performed H&E, Masson’s
trichrome, and reticular fiber staining, and their stages of liver fibrosis tissues were determined
by the Scheuer [31] grading system. This study excluded patients with incomplete clinical data,
severe cardiovascular diseases, and other severe systematic diseases.

The Scheuer [31] system defines liver fibrosis into five stages. In stage 0 (S0), there is no
fibrosis occurs. Stage 1 (S1) is defined with the appearance of the enlarged, fibrotic portal
tracts. Stage 2 (S2) is defined with the formation of periportal or portal-portal septa in intact
architecture. In stage 3 (S3), the fibrosis appears with architectural distortion, but no obvious
cirrhosis. Stage 4 (S4) is considered probable or definite cirrhosis. In this study, among the 38
patients, a total of 10 patients, 10 patients, 9 patients, and 9 patients were diagnosed with stage 1
(S1), stage 2 (S2), stage 3 (S3), and stage (4) of liver fibrosis, respectively. For each patient, a
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Fig. 1. Photograph and schematic of Mueller matrix microscope based on dual DoFP
polarimeters (DoFPs-MMM).

4-µm-thick H&E-stained pathological slide was used to acquire polarization parameter images
and H&E images. For each H&E-stained slide, one region of interest (ROI) that indicates the
typical pathological features of liver fibrosis as shown in Fig. 2 was labeled by an experienced
pathologist. Polarization imaging was performed on the labeled ROIs of the H&E-stained tissue
sections to acquire polarization parameter images. And the corresponding H&E images under
different resolutions were also obtained for comparisons. Figure 2 shows the ROIs of the H&E
images for liver fibrosis tissues from S1 to S4 under objective lenses of 4×, 10×, 20×, and
40×. This study strictly followed the rules regulated by the Ethics Committee of the Mengchao
Hepatobiliary Hospital.

2.3. Polarimetry basis parameters (PBPs)

Mueller matrix contains full polarization information of pathological samples, but the individual
elements often lack explicit connections to specific microstructures. Therefore, various polar-
ization parameters [32] with more explicit physical meanings were derived from the Mueller
matrix to characterize the microstructures of pathological samples. In recent research, Dong et
al. [7] summarized previously derived polarization parameters from different physical methods
into Polarimetry Basis Parameters (PBPs). This study also employed the term Polarimetry Basis
Parameter (PBP) to characterize the microstructures of liver fibrosis tissues. Table S1 of the
supplemental document summarizes the calculation equations and physical meanings of the 26
PBPs used in this study. The 26 PBPs including 5 Mueller matrix polar decomposition (MMPD)
parameters [32–34], 5 Mueller matrix transformation (MMT) parameters [1,32], 4 Mueller matrix
rotation invariant (MMRI) parameters along with 4 corresponding orientation angle parameters
[32,35], 4 Mueller matrix linear birefringence identity (MMLBI) parameters [5,32] and 4 Mueller
matrix linear diattenuation identity (MMLDI) parameters [5,32]. The 5 MMPD parameters are
linear retardance parameter δ, linear retardance orientation angle parameter θ, diattenuation
parameter D, depolarization parameter ∆, and the optical rotation parameterΨ . The 5 MMT pa-
rameters include anisotropy degree parameter t1, polarizance parameter b, circular birefringence
parameter β, normalized anisotropy parameter A and local orientation parameter α. The 4 MMRI
parameters contain linear polarizance parameter PL, linear diattenuation parameter DL, and the
birefringence related parameters qL and rL that also describe the capabilities of transforming
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Fig. 2. The 4-µm-thick H&E-stained pathological features of liver fibrosis tissues at stages
S1 to S4 under 4×, 10×, 20×, and 40× objective lenses. The typical liver fibrosis histological
features for each stage were highlighted in red marks.

between linear and circular polarizations. The 4 corresponding orientation angle parameters
involve linear polarizance orientation angle parameter αP, linear diattenuation orientation angle
parameter αD, and birefringence related orientation angle parameters αq and αr. The 4 MMLBI
parameters are P1, P2, P3 and P4 that derived through comparison between an asymmetric
anisotropic Mueller matrix with a pure linear retarder Mueller matrix. The 4 MMLDI parameters
are P5, P6, P7 and P8 that derived through comparison between an asymmetric anisotropic
Mueller matrix with a pure linear diattenuator Mueller matrix.

2.4. Workflow of polarization parameter images based radiomics approach

The workflow of polarization imaging based image feature analysis approach includes four
steps: (1) polarization parameter images acquisition; (2) polarization parameter images feature
extraction; (3) polarization parameter images feature selection and classification; (4) and the
interpretation and correlation of selected significant polarization parameter image features with
the microstructures of liver fibrosis tissues from S1 to S4. Figure 3 illustrates the workflow of the
polarization imaging based radiomics approach in detail.

In the polarization parameter image feature extraction step as shown in the workflow of Fig. 3,
for a single ROI of a liver fibrosis sample, the inputs were 26 Polarization Basis Parameter (PBP)
images derived from different physical methods with explicit physical meanings. For each PBP
image, a total of 110 image features were extracted. Therefore, for a single ROI of a liver fibrosis
sample, as many as 2860 PBP image features can be extracted. The 26 PBPs were introduced
in Table S1 of the supplemental document in detail. The 110 image features [36] include: (1)
18 intensity based statistical features; (2) 23 discretised intensity frequency count histogram
(DIFCH) based features; (3) 6 intensity volume histogram (IVH) based features; (4) 25 gray level
co-occurrence matrix (GLCM) based features; (5) 16 gray level run length matrix (GLRLM)
based features; (6) 5 neighborhood gray tone difference matrix (NGTDM) based features; (7) and
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Fig. 3. Workflow of polarization parameter images based radiomics approach for the staging
of liver fibrosis.

17 neighboring gray level dependence matrix (NGLDM) based features. The detailed names,
meanings, and calculation equations of the 110 image features were shown in the reference
manual published by the image biomarker standardization initiative (IBSI) [36].

In the polarization parameter image feature selection and classification step as shown in the
workflow of Fig. 3, the forward Sequential Feature Selection (SFS) [37] was combined with
the Extra-Trees classifier to assess the performance of the 26 Polarization Basis Parameters at
the image features level. In the combination of forward SFS with Extra-Trees, the forward SFS
method sequentially adds the best polarization parameter image feature based on the highest
5-fold cross-validation scores of the Extra-Trees classification on liver fibrosis tissues at four
stages to form a selected significant features subset in a greedy fashion [38]. The Extra-Trees
classifier imported from the “sklearn.ensemble.ExtraTreesClassifier” of the Scikit-Learn library
[38] is an Extremely Randomized Trees ensemble of Decision Trees, which are suitable for
fitting complex datasets in classification, regression, and multi-output tasks. During the machine
learning classification, the Decision Trees create sequential questions that split the datasets
into smaller groups and a predictive decision is made at the terminal node. In Decision Trees,
Gini impurity that measures the probability of misclassification is used to decide the optimal
split from a root node or subsequent splits, and a lower Gini impurity represents a better split
[39]. In this study, the combination of forward Sequential Feature Selection with Extra-Trees
classifier simultaneously outputs the highest liver fibrosis four-class classification accuracy with
its corresponding subset of significant and interpretable PBP image features that play a critical
role in the characterization of the microstructural features of liver fibrosis tissues.
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3. Results and discussion

3.1. Polarization imaging results of liver fibrosis tissue samples

Previous studies indicate polarization imaging is sensitive to pathological changes of fibrous
structures [13,14]. Dong et al. [14] state the MMPD linear retardance parameter δ and its
corresponding orientation angle parameter θ are sensitive to the fibrous structures of breast ductal
carcinoma tissues. Wang et al. [13] indicate that birefringence related polarization parameters
play an important role in the characterization of liver fibrosis tissues. He et al. [1] summarize
the birefringence related polarization parameters δ, qL and rL are more sensitive to collagen
and fibrous structures. The diattenuation related polarization parameters PL and DL are more
sensitive to cell nucleus structures. In this study, the polarization imaging based radiomics
approach selected 8 significant polarization parameters including the linear birefringence related
parameter P1 and P4, the diattenuation related parameter P5 and D, the polarizance parameter
b, the circular birefringence parameter β, the linear diattenuation orientation related parameter
αP, and the linear birefringence orientation related parameter αr. In Fig. 4, example images of
selected significant parameters P4, D, αP and αr of liver fibrosis tissues at stages S1, S2, S3, and
S4 under a 4× objective lens were shown.

Fig. 4. Images of Polarimetry Basis Parameters P4, D, αP and αr of liver fibrosis tissues at
stages S1, S2, S3 and S4. The image size is 1591× 2411 pixels. The color bar of the image
ranges from the 2nd percentile to the 98th percentile of the polarization parameter.

3.2. Polarization image features selection with forward sequential feature selection

The combination of forward Sequential Feature Selection (SFS) with Extra-Trees classification
[37] was applied to the 2860 PBP image features to acquire the best PBP image features subset
with the highest classification accuracy in the staging of liver fibrosis tissues. This combination
sequentially selects the best polarization parameter image feature based on the highest 5-fold
cross-validation scores of Extra-Trees classifier to form a selected features subset in a greedy
fashion [38]. During the machine learning based PBP image feature selection and classification
process, the 5-fold cross-validation was added for the selection of PBP image features and the
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classification of liver fibrosis tissues at four stages. This combined process simultaneously
outputs the selected PBP image features subset along with their corresponding four-class liver
fibrosis classification accuracy, which was calculated by taking the mean of the 5-fold cross-
validation accuracies. To add the 5-fold cross-validation, the 38 liver fibrosis samples were
randomly separated into 5 folds with a relatively even distribution of classes. During the 5-fold
cross-validation, 4 folds were used as the training set and 1 fold was used as the testing set.
The cross-validation repeats until each fold of the 5 folds has been used as the testing set. The
four-class liver fibrosis classification accuracy in this study was obtained by taking the mean
of the 5 testing set accuracies of the 5-fold cross-validation. Figure 5 shows the four-class liver
fibrosis classification accuracy from 1 PBP image feature up to 15 PBP image features with an
increment of 1. The results indicate a subset of 12 PBP image features achieved the highest
four-class classification accuracy of 94.6%.

Fig. 5. Four-class liver fibrosis classification accuracies of selected PBP image features
from 1 PBP image feature up to 15 PBP image features with an increment of 1.

The confusion matrices of the 12 PBP image features subset with the highest accuracy were
shown in Fig. 6. Figure 6(a) to Fig. 6(e) show the confusion matrix of using each fold of the 5
folds as the testing set in the 5-fold cross-validation process. The results indicate the testing set
accuracy for fold 1, fold 2 and fold 4 was all 100% as shown in Fig. 6(a), Fig. 6(b) and Fig. 6(d),
respectively. The testing set accuracy for fold 3 and fold 5 was 87.50% and 85.71% as shown in
Fig. 6(c) and Fig. 6(e) respectively. For fold 3, one liver fibrosis sample at S3 was misclassified
into S1. For fold 5, one liver fibrosis sample at S4 was misclassified into S3.

To sum up, among the total of 38 liver fibrosis samples, the 10 samples from S1 and the 10
samples from S2 were all classified correctly. For samples from S3 and S4, both 8 out of 9
samples were classified correctly. The one sample in S3 misclassified into S1 causes greater
consequences than the one sample in S4 misclassified into S3 in terms of affecting the later
clinical treatment and prognosis. One of the causes of the misclassification was the limitation
of sample sizes. In the future, more liver fibrosis samples will be collected to improve the
classification accuracies.

Table 1 demonstrates the details of the selected PBP image features from 1 feature up to 15
features in increasing order with corresponding four-class liver fibrosis classification accuracies
shown in Fig. 5. The first 12 PBP image features were significant PBP image features that can
form a subset to achieve the highest four-class liver fibrosis classification accuracy of 94.6% with
the 5-fold cross-validation. In the polarization perspective, for the 12 PBP image features subset,
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Fig. 6. The confusion matrix for each fold of the 5-fold cross-validation of the 12 PBP image
features subset with the highest four-class classification accuracy of 94.6%. Figure 6(a) to
Fig. 6(e) show the confusion matrix of using fold 1, fold 2, fold 3, fold 4 and fold 5 as the
testing set, respectively.

a total of 8 significant PBPs including αP, P1, P5, αr, b, β, P4, and D were selected from the 26
PBPs. The first PBP selected by the combined machine learning process was the orientation
angle parameter αP, which describes the orientations of diattenuation. The Mueller matrix linear
birefringence identity (MMLBI) parameters P1 and P4 are the deviations of an asymmetric
anisotropic Mueller matrix compared with a pure linear retarder Mueller matrix. Parameter P1
measures the breaking of the symmetry of the Mueller matrix elements m43 and m34. Parameter
P4 is obtained through subtracting the multiply of m42 and m43 from the multiply of m34 and m24.
The selection of parameters P1 and P4 indicate the appearance of liver fibrosis microstructures
that break the symmetries of birefringence related Mueller matrix elements. The Mueller matrix
linear diattenuation identity (MMLDI) parameter P5 is a deviation of an asymmetric Mueller
matrix compared with a pure linear diattenuator Mueller matrix. The selection of P5 indicates
the appearance of liver fibrosis microstructures that break the symmetry of linear diattenuation
related Mueller matrix elements m12 and m21. The orientation angle parameter αr is related
to the orientations of linear birefringence and is calculated by Mueller matrix elements m24
and m34. The Mueller matrix transformation (MMT) parameter b is the polarizance related
parameter calculated from Mueller matrix elements m22 and m33. Parameter β is the circular
birefringence parameter calculated from Muller matrix elements m23 and m32. The Mueller
matrix polar decomposition (MMPD) parameter D describes the diattenuation of liver fibrosis
tissues. To summarize in the polarization perspective, the values of linear birefringence (P1,
P4), diattenuation (P5, D), polarizance (b), and circular birefringence (β) related parameters
played important roles in distinguishing the liver fibrosis histological structures with the highest
classification accuracy of 94.6%. The orientation angle parameters related to linear diattenuation
(αP) and linear birefringence (αr) also made contributions in characterizing the liver fibrosis
tissues at four stages.
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Table 1. Selected PBP Image Features Subsets by the Combination of Forward SFS with
Extra-Trees

List of 15 Selected PBP Image Features

Number PBP
Image Features

Image Feature Name Image Feature Meaning [36]

1 αP NGLDM Low Gray Level Count
Emphasis (LGLCE)

Distribution of low gray-level values

2 P1 DIFCH Mean Discretised Intensity Mean of the discretised intensity

3 P5 GLCM Difference Entropy Randomness in neighborhood intensity value
differences

4 αP GLRLM Low Gray Level Run
Emphasis (LGLRE)

Distribution of low gray-level run lengths

5 αr NGTDM Complexity An image is complex when it is non-uniform and
has many rapid changes in gray-level intensity

6 b GLCM Correlation Joint probability occurrence of the specified pixel
pairs

7 αP GLRLM Short Run Low Gray Level
Emphasis (SRLGLE)

Joint distribution of short run lengths with low
gray-level values

8 β GLRLM Run Percentage Coarseness of the texture calculated by taking the
ratio of number of runs and number of pixels in
the ROI

9 P4 Intensity Based Energy Measures the magnitude of pixel values in an
image with a sum of the squares function

10 P5 GLRLM Long Run Low Gray Level
Emphasis (LRLGLE)

Joint distribution of long run lengths with low
gray-level values

11 b GLCM Information Correlation 2 Complexity of the texture

12 D GLCM Correlation Joint probability occurrence of the specified pixel
pairs

13 α DIFCH Discretised Intensity Kurtosis Peakedness of the discretised intensity

14 α NGLDM Low Dependence Low Gray
Level Emphasis (LDLGLE)

Joint distribution of low dependence with low
gray-level values

15 qL GLRLM Normalised Run Length
Non-Uniformity (NRLNU)

Homogeneity of run lengths throughout the image

Previous studies on pathological tissues such as breast ductal carcinoma tissues [14] and
liver fibrosis tissues [13] indicate polarization imaging is sensitive to fibrous structures. In
the liver fibrosis study, Wang et al. [13] applied Mueller matrix imaging on four slices of
8-µm-thick unstained and dewaxed liver fibrosis tissues from stage F1 to stage F4 for quantitative
microstructural characterization. The results indicate the MMPD linear retardance parameter δ
and its corresponding orientation angle parameter θ, the retardance related MMT parameter t
and its corresponding orientation angle parameter x are all can be used for the quantification of
liver fibrosis tissues from F1 to F4. Wang et al. [13] also performed Monte Carlo simulations
based on the sphere birefringence model to study the influence of the liver fibrosis progress on
polarization parameters. The simulations demonstrate the progression of liver fibrosis causes
the increase of birefringence values. Both experimental results and Monte Carlo simulations
indicate that birefringence plays an important role to characterize liver fibrosis at four stages.
Therefore, in this study, the selection of significant PBPs that are related to the values (P1, P4)
and orientations (αr) of birefringence in the classification of liver fibrosis tissues match with
previous studies in terms of physical meanings. For thin pathological tissue sections, He et al.
[1] summarize the birefringence related polarization parameters δ, qL and rL are more sensitive
to collagen and fibrous structures. The diattenuation related polarization parameters PL and DL
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are more sensitive to cell nucleus structures. Therefore, the selection of significant PBPs related
to values (P5, D) and orientations (αP) of diattenuation may indicate the contributions of cell
nucleus structural differences in the classification of liver fibrosis tissues. In addition, this study
shows the image features of the polarizance parameter b and the circular birefringence parameter
β also can make contributions to distinguish liver fibrosis tissues.

In the polarization image features perspective, as shown in Table 1, for the 12 PBP image features
subset with the highest classification accuracy, parameter αP that related to the orientations of
linear diattenuation selected three image textures including the NGLDM based Low Gray Level
Count Emphasis (LGLCE), the GLRLM based Low Gray Level Run Emphasis (LGLRE), and
the GLRLM based Short Run Low Gray Level Emphasis (SRLGLE). Table 1 shows all of these
three image textures measure the distribution of low gray-level values in parameter αP, which
indicates the distribution of low gray-level values in parameter αP is particularly informative
in characterizing the liver fibrosis microstructures from S1 to S4. The Mueller matrix linear
birefringence identity parameters P1 and P4 selected the Intensity Histogram based Mean and
the Intensity based Energy respectively. The Intensity based Energy measures the magnitude
of pixel values in parameter P4 with a sum of the squares function. The Mueller matrix linear
diattenuation identity parameter P5 selected two image textures including the GLCM based
Difference Entropy and the GLRLM based Long Run Low Gray Level Emphasis (LRLGLE).
The GLCM based Difference Entropy quantifies the randomness in neighborhood intensity value
differences of parameter P5. The GLRLM based LRLGLE measures the joint distribution of
long run lengths with low gray-level values in P5. The linear birefringence orientation related
angle parameter αr selected the NGTDM based Complexity that measures the nonuniformity
and rapid changes in gray-level intensities. The polarizance parameter b selected two image
textures from the GLCM family including the Correlation and the Information Correlation 2.
The Correlation describes the joint probability occurrence of the specified pixel pairs and the
Information Correlation 2 measures the Complexity of the textures of parameter b. The circular
birefringence related parameter β selected the GLRLM based Run Percentage that quantifies
the Coarseness of the textures. The MMPD diattenuation parameter D also selected the GLCM
based Correlation to distinguish liver fibrosis tissues from S1 to S4.

In summary, all the 12 significant PBP image features listed in Table 1 made contributions
to achieving the highest four-class liver fibrosis classification accuracy of 94.6%. For the
birefringence related parameters P1 and P4, the intensity histogram based Mean and the
magnitude of intensities were useful. For the birefringence orientation related parameter αr,
the complexity and non-uniformity of the images were informative. For the diattenuation
related parameter P5, the randomness in neighborhood intensity value differences and the joint
distribution of long run lengths with low gray-level values were important. For diattenuation
related parameter D, the GLCM based Correlation was useful. To be noted, for the diattenuation
orientation related parameter αP, the distribution of low gray-level values was particularly
informative because αP selected 3 image features that describe the distribution of low gray-level
values. Besides, the GLCM based correlation and complexity of polarizance parameter b, the
coarseness of circular birefringence parameter β were all provided useful information for the
quantitative characterization of liver fibrosis tissues at four stages. In addition, this study has a
limited sample size of 38 patients. Even though with the addition of the 5-fold cross-validation
process, the classification accuracy was relatively stable and robust and the selected significant
PBPs were relatively consistent with our previous studies in terms of physical meanings. Further
studies with more liver fibrosis samples also can be done in the future to improve the classification
accuracies for clinical applications and further validate the polarization based radiomics approach.
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3.3. Comparison of significant PBP image features and H&E image features

Several preliminary studies have been investigated the effects of resolutions on polarization
parameter images and H&E images. Shen et al. [12] studied the effects of resolution on MMPD
derived linear retardance parameter δ and its corresponding orientation angle parameter θ. This
study obtained the parameters δ and θ under 4× and 40× objective lenses. Then, six polarization
parameter image features under 4× and 40× resolutions were calculated to perform a quantitative
comparison. The results indicate the breast tissue fiber density information contained by the
GLCM features of parameter δ was well preserved when the polarization imaging resolution
decreases. But the breast tissue fiber orientation information contained by the orientation angle
parameter θ was not completely preserved when the polarization image resolution decreases.
Liu et al. [11] performed a comparison between pixel-based polarization parameters and H&E
image textures in the characterization of breast ductal carcinoma tissues under multi-resolution
cases. The results indicate for Tamura related H&E image textures, the accuracies to identify the
target structures decreased significantly with the decline of resolutions. However, for polarization
parameter ∆, t1, DL, δ and rL, the accuracies to identify the target structures were stable with
only slight fluctuations under multi-resolution cases. These preliminary studies demonstrate the
performance of H&E image textures decreases significantly with the decline of resolutions. In
comparison with H&E image textures, the performance of polarization parameters is less affected
by the decline of resolutions. Therefore, in this study, comparisons were made between 4×
low-resolution polarization parameter image features and multi-resolution H&E image features to
demonstrate the advantage of polarization imaging under low-resolution and wide-field conditions
in the staging of liver fibrosis.

In the comparative study, the radiomics approach was applied on H&E images under 4×,
10×, 20×, and 40× resolutions as shown in Fig. 2. The workflow of radiomics approach for
H&E images includes (1) multi-resolution H&E images acquisition; (2) extraction of 110 image
features for each channel (RGB) of H&E images; (3) and H&E image features selection and
classification through the combination of forward SFS with Extra-Trees. This workflow used
the same machine learning based feature selection, classification, and 5-fold cross-validation
methods compared with the workflow of polarization parameter images that obtained the highest
classification accuracy of 94.6%. The highest classification accuracies of PBP image features
under a 4× resolution and H&E image features under 4×, 10×, 20×, and 40× resolutions were
shown in Table 2.

Table 2. Classification Accuracy of 4 × PBP Image Features and Multi-Resolution H&E Image
Features

H&E 4 × H&E 10 × H&E 20 × H&E 40 × PBP 4 ×

Accuracy 63.9 71.4 73.6 77.1 94.6

The highest classification accuracy of PBP image features under a 4× resolution was 94.6%.
The highest classification accuracies of H&E image features under 4×, 10×, 20×, and 40×
resolutions were 63.9%, 71.4%, 73.6%, and 77.1% respectively. For H&E image features, the
classification accuracy decreases with the decline of resolutions. From 40× to 20×, the accuracy
decreased by 3.5%. From 20× to 10×, the accuracy decreased by 2.2%. And from 10× to
4×, the accuracy decreased significantly by 7.5%. In comparison with H&E image features
under multi-resolutions, the significant PBP image features subset under a 4× low-resolution
can achieve the highest classification accuracy of 94.6% in the characterization of liver fibrosis
tissues from S1 to S4. The H&E images only contain 3 channels (Red channel, Green channel,
and Blue channel). The polarization parameter images are high dimensional and contain 26
PBPs with more explicit physical meanings. These results demonstrate the high dimensional
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polarization parameter images contain rich microstructural information of liver fibrosis tissues
even at low-resolution and wide-field conditions.

3.4. Interpretation of significant H&E image features

The significant PBP image features under a 4× resolution were already discussed in detail in
Table 1. The significant multi-resolution H&E image features corresponding to the classification
accuracies shown in Table 2 were listed in detail in Table 3, Table 4, Table 5, and Table 6,
respectively.

Table 3. Interpretation of Significant 4 × H&E Image Features Subset

Number RGB Channel 4 × H&E Image Feature Name 4 × H&E Image Feature Meaning [36]

1 Blue DIFCH Discretised Intensity
Skewness

Asymmetry of discretised intensity

2 Red DIFCH Intensity Histogram
Median Absolute Deviation

Dispersion from the Median

3 Red GLRLM Gray Level Variance
(GLV)

Variance in gray level intensity for the runs

Table 4. Interpretation of Significant 10 × H&E Image Features Subset

Number RGB Channel 10 × H&E Image Feature Name 10 × H&E Image Feature Meaning [36]

1 Blue Skewness Asymmetry of intensity

2 Red DIFCH Median discretised intensity Median of discretised intensity

3 Red GLRLM Gray Level Variance (GLV) Variance in gray level intensity for the runs

Table 5. Interpretation of Significant 20 × H&E Image Features Subset

Number RGB Channel 20 × H&E Image Feature Name 20 × H&E Image Feature Meaning
[36]

1 Red NGTDM Strength A measure of primitives, value is high
when the primitives are easily defined
and visible

2 Red GLRLM Run Length Variance (RLV) Variance in runs for the run lengths

3 Red Mean Mean of intensity

4 Red GLCM Inverse Difference Moment Local homogeneity

5 Red GLRLM Short Run Emphasis (SRE) Distribution of short run lengths,
value is high for fine textures

6 Red DIFCH P10 10th discretised intensity percentile

For the H&E images under a 4× resolution, three image features as shown in Table 3 were
selected to achieve the highest four-class classification accuracy of 63.9%. The results indicate
for 4× H&E images, the intensity histogram (DIFCH) based features that measure the asymmetry
of the blue channel and the dispersion from the median of the red channel contain informative
textural information to distinguish liver fibrosis tissues at four stages. The GLRLM based Gray
Level Variance that measures the variance in gray level intensity for the runs of the red channel
also provided additional information for the characterization.

For the H&E images under a 10× resolution, three image features as shown in Table 4 were
selected to achieve the highest four-class classification accuracy of 71.4%. For 10× H&E images,
the intensity based statistical feature of Skewness that measures the intensity asymmetry of
the blue channel, the intensity histogram (DIFCH) based feature that measures the Median of
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Table 6. Interpretation of Significant 40 × H&E Image Features Subset

Number RGB Channel 40 × H&E Image Feature
Name

40 × H&E Image Feature Meaning [36]

1 Blue GLCM Difference Entropy Randomness in neighborhood intensity value
differences

2 Red DIFCH Minimum Histogram
Gradient

Minimum Histogram Gradient

3 Red GLCM Difference Entropy Randomness in neighborhood intensity value
differences

4 Blue DIFCH Minimum Histogram
Gradient Intensity

Discretised intensity corresponding to the
Minimum Histogram Gradient

5 Green DIFCH P10 10th discretised intensity percentile

6 Green DIFCH Intensity Histogram
Median Absolute Deviation

Dispersion from the Median

7 Red GLRLM Short Run High Gray
Level Emphasis (SRHGLE)

Joint distribution of short run lengths with
high gray-level values

8 Blue GLRLM Long Run Emphasis
(LRE)

Distribution of long run lengths, value is high
for coarse structural textures

discretised intensity of the red channel, and the GLRLM based GLV that measures the variance
in gray level intensity for the runs are all informative to classify the liver fibrosis tissues.

For the H&E images under a 20× resolution, six image features as shown in Table 5 were
selected to achieve the highest four-class classification accuracy of 73.6%. The six image features
were all extracted from the red channel of the 20× H&E images. The informative image features
to distinguish the liver fibrosis tissues include the NGTDM based Strength that measures the
image primitives, the GLRLM based RLV that quantifies the variance in runs for the run lengths,
the intensity based statistical feature of Mean, the GLCM based Inverse Difference Moment
that measures the local homogeneity, the GLRLM based SRE that describe the fineness of
image textures, and the intensity histogram (DIFCH) based feature of 10th discretised intensity
percentile.

For the H&E images under a 40× resolution, 8 image features as shown in Table 6 were selected
to achieve the highest four-class classification accuracy of 77.1%. Three image features extracted
from the blue channel provided useful textural information to classify the liver fibrosis tissues.
They were the GLCM based Difference Entropy that quantifies the randomness in neighborhood
intensity value differences, the intensity histogram (DIFCH) based Minimum Histogram Gradient
Intensity, and the GLRLM based Long Run Emphasis (LRE) that measures the coarseness of
image textures. Besides, three image features extracted from the red channel were also selected for
classification. They were the intensity histogram (DIFCH) based Minimum Histogram Gradient,
the GLCM based Difference Entropy that related to the randomness of the red channel, and
the GLRLM based Short Run High Gray Level Emphasis (SRHGLE) that describes the joint
distribution of short run lengths with high gray-level values. The two green channel extracted
intensity histogram (DIFCH) based features that calculate the 10th discretised intensity percentile
and the dispersion from the Median also provided important textural information to achieve a
four-class classification accuracy of 77.1%.

The comparisons of the 12 significant PBP image features listed in Table 1 with the multi-
resolution significant H&E image features listed in Table 3, Table 4, Table 5, and Table 6 do not
show explicit correlations and tendencies in the characterization of the histological structures of
liver fibrosis tissues. Only one image feature was selected both by the 4× polarization parameter
images and the multi-resolution H&E images, which was the GLCM based Difference Entropy.
It measures the randomness in neighborhood intensity value differences and was selected by both
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the diattenuation related parameter P5 under a 4× resolution and the H&E images under a 40×
resolution.

4. Conclusions

In conclusion, we systematically analyzed the image features of 26 polarization parameters
with explicit physical meanings through the radiomics approach. This study demonstrates
the feasibility to provide a polarization imaging based radiomics approach that focuses on
the quantitative image features analysis in the clinical staging of liver fibrosis. In addition,
comparisons between polarization image features under a 4× objective lens with H&E image
features under 4×, 10×, 20×, and 40× objective lenses were performed. With the same radiomics
approach, the highest classification accuracies of H&E image features under 4×, 10×, 20×, and
40× resolutions were 63.9%, 71.4%, 73.6%, and 77.1% respectively. The highest classification
accuracy of polarization parameter images under a 4× resolution was 94.6%. In this study, 8
significant polarization parameters were selected out of 26 polarization parameters to achieve
the highest classification accuracy of 94.6%. The results indicate the 8 PBP image features
extracted from the linear birefringence (P1, P4), diattenuation (P5, D), polarizance (b), and
circular birefringence (β) related parameters played important roles in distinguishing the liver
fibrosis histological structures from S1 to S4. The 4 PBP image features extracted from the
orientation angle parameters related to linear diattenuation (αP) and linear birefringence (αr) also
made contributions in characterizing the liver fibrosis tissues. The comparison of the significant
PBP image features with the significant H&E image features does not show explicit correlations
and tendencies in the staging of liver fibrosis tissues. Only one image feature was selected by
both the 4× polarization parameter images and the multi-resolution H&E images, which was the
GLCM based Difference Entropy that measures the randomness in neighborhood intensity value
differences. It was selected by both the diattenuation related parameter P5 under a 4× resolution
and the H&E images under a 40× resolution. In conclusion, this study demonstrates that high
dimensional polarization parameter image features are good at quantitatively characterizing the
microstructural features of liver fibrosis tissues even at low-resolution and wide-field conditions.
The superiority of characterizing the histological structures in low-resolution and wide-field
conditions enables the potential to integrate polarization imaging in various in vivo and endoscopic
imaging systems to facilitate the clinical diagnosis and prognosis.
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